Organic semiconductor density of states controls the energy level alignment at electrode interfaces

نویسندگان

  • Martin Oehzelt
  • Norbert Koch
  • Georg Heimel
چکیده

Minimizing charge carrier injection barriers and extraction losses at interfaces between organic semiconductors and metallic electrodes is critical for optimizing the performance of organic (opto-) electronic devices. Here, we implement a detailed electrostatic model, capable of reproducing the alignment between the electrode Fermi energy and the transport states in the organic semiconductor both qualitatively and quantitatively. Covering the full phenomenological range of interfacial energy level alignment regimes within a single, consistent framework and continuously connecting the limiting cases described by previously proposed models allows us to resolve conflicting views in the literature. Our results highlight the density of states in the organic semiconductor as a key factor. Its shape and, in particular, the energy distribution of electronic states tailing into the fundamental gap is found to determine both the minimum value of practically achievable injection barriers as well as their spatial profile, ranging from abrupt interface dipoles to extended band-bending regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of the Charge Neutrality Level at Metal/Organic and Organic/Organic Interfaces

This paper describes how the concepts of Charge Neutrality Level (CNL) and Induced Density of Interface States (IDIS) can successfully explain the energy level alignment at metal-organic and organic-organic interfaces. We propose that the CNL acts as an effective Fermi level for the organic semiconductor: its partial alignment with the metal Fermi level (in the case of metal-organic interfaces)...

متن کامل

Energy level alignment at organic heterojunctions: Role of the charge neutrality level

We present a mechanism that explains the energy-level alignment at organic-organic sOOd semiconductor heterojunctions. Following our work on metal/organic interfaces, we extend the concepts of charge neutrality level sCNLd and induced density of interface states to OO interfaces, and propose that the energy-level alignment is driven by the alignment of the CNLs of the two organic semiconductors...

متن کامل

Electronic Properties of Organic Semiconductor/Electrode Interfaces: The Influence of Contact Contaminations on the Interface Energetic

During the last decades there has been considerable progress as regards the understanding of OSC/electrode interfaces. In this Review, we summarize recent work on the interface energetics influenced by the presence of electrode surface contamination due to the used ex-situ cleaning procedure prior the interface formation. Contact contaminations of the electrodes essentially affect the interface...

متن کامل

Electronic and structural properties of interfaces between electron donor & acceptor molecules and conductive electrodes

The present work is embedded in the field of organic electronics, where charge injection into any kind of device is critically determined by the electronic and structural properties of the interfaces between the electrodes and the conjugated organic materials (COMs). Three main topics are addressed: energy level tuning with new or so far unexplored strong electron (i) donor and (ii) acceptor ma...

متن کامل

Energy level alignment at molecular semiconductor/GaAs(100) interfaces: Where is the LUMO?

The energy position of the lowest unoccupied molecular orbital (LUMO) in 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) and dimethyl-3,4,9,10-perylenetetracarboxilic diimide (DiMePTCDI) was determined by investigating the energy level alignment at molecular semiconductor/GaAs(100) interfaces. Interface dipoles are found to form at the interfaces of both organic materials and consequently...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014